
International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1852
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Performance Optimization Methods of MQ
systems

Vishal Anand, Vinay M. Rao, Satheesh Babu K.

Abstract— MQ systems are messaging and queuing middleware, with point-to-point, publish/subscribe, and file transfer modes of
operation. Applications publishes the messages to many subscribers over queues to be consumed by other system component.MQ
messaging system performance issue would have a cascading effect into all aspects of an enterprise application. It will impact the
turnaround time for transactions which goes through the MQ systems, consequently degrading the response time or throughput for the end
users. It is critical to optimize the MQ systems to scale up the application or enhancing the response time.

Experiment-based performance optimizing approaches have been introduced as an alternative to prediction-based performance optimizing
techniques. A representative system (testing environment) like the production environment allows a MQ system administrator to accurately
sense the performance gain/loss for a tuning task. In this paper all the important parameters of the MQ systems were explained and
designates a novel approach to experiment-based performance optimization techniques.

A proof-of-concept implementation was shown to achieve the optimal results implying the configuration changes one by one and creating
the baseline for each performance changes that achieved the optimal results. It is advised to test another configuration change on the
baseline achieved after first set of configuration change.

It is very important to monitor the hardware resources for every test to find a trade-off between increased hardware usage to the
performance enhancement of the application. Depending on the system resource utilizations and results achieved after the tuning efforts,
combined advantageous parameter of the MQ system would be preferred over other as shown in the tests.

Index Terms- Acknowledgement Mode, Benchmarking, Baselining, Performance Enhancement, Resource utilization, Tradeoff

—————————— ——————————

1 INTRODUCTION
MQ system is one of the main components of any enterprise
application. Performance problems in the MQ systems will
have ripple effect in every aspect of an application.MQ system
vendors always provide the standard guidelines and configu-
ration settings to have the good performance, but it is the re-
sponsibility of the MQ administrator and Performance Engi-
neer to fine tune the system to get the better performance with
any given application [1]. A fined tuned MQ system would
help to achieve the service level agreements (SLA) of an appli-
cation. It’s always good to have testing environment which
should be close replica of the production environment because
tuning work carried out on the system could be invalidated if
testing and production environment are not same.
There are other factors that pose much more subtle perfor-
mance problems which include upgrades for the MQ system
software, patches for the change in configuration parameters
(i.e. depreciated
configuration settings or change in a default value set at instal-
lation), change in workloads and business requirements. It is
wise to check the available upgrades and patching for the MQ
systems first before proceeding to the tuning effort.
All the important parameters of the MQ systems were dis-
cussed in detail to understand and use it in tuning effort. Eve-
ry tuning change should be implemented singularly to gauge
the impact of the optimization of the MQ system and all the
load test results along with the resource utilization of the sys-
tem should be carefully analyzed to arrive on the optimal re-
sults.

An adaptive resource allocation method is proposed to trade-
off between resource utilization and performance (response
time and throughput) of the application. Performance metrics
are compared with the baseline and results obtained after con-
figuration changes. A trade-off is decided between increment
in hardware usage to the enhanced performance of the appli-
cation.

2 THE PERFORMANCE TUNING PROCESS:
Performance of a messaging queues (MQ) application depends
on the interaction between the application and the MQ mes-
sage service. Therefore, maximizing performance requires the
combined efforts of both the performance Engineer and MQ
administrative skills. The process of optimizing performance
begins with application design and tuning of the message ser-
vice configurations. Performance optimization process in-
cludes the following stages [2]:

1. Defining the performance requirements of an applica-

tion.
2. Designing the application after considering the factors

that affect performance (especially trade-offs between
reliability and performance)

3. Establishing baseline performance measures
4. Tuning or reconfiguring the MQ message service to

optimize performance.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1853
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

2.1 Aspects of Performance Engineering
Performance is a measure of the speed and efficiency with
which a message service delivers messages from one end
(Generator) to another end (consumer). There are several dif-
ferent aspects of performance that could be important for op-
timization depending on the requirement [2,3]. There are al-
ways trade-offs between reliability and performance of an ap-
plication, so these different aspects of performance are inter-
related. If message throughput of application is high which
means that messages are less likely to be backlogged in the
message server hence latency should be low (a single message
can be delivered very quickly). However, latency depends on
many factors, the speed of communication links, message
server processing speed, and client processing speed.

2.2 Benchmarking and Baselining Usage Patterns:

Benchmarking is the primary method of measuring the per-
formance of an application. Benchmarking refers to running a
set of representative tests on different configurations and
types of hardware machine and measuring the results (mes-
sage throughput, Latency and Stability). Benchmark results
are used to evaluate the performance of a given system on a
well-defined workload. Benchmarks are developed to pin-
point performance problems of new systems.
Test environment is created with the Generating and Consum-
ing clients which will have same number of connections, ses-
sions, and message producers, sending the persistent or non-
persistent messages of a standard size to the number of
queues that will consume the messages in the test environ-
ment’s destinations (Depending on messaging application
design) at specified rate which will measure the time taken
between generation and consumption of messages or the av-
erage message throughput rate, and monitor the system to
observe connection thread usage, message storage data, mes-
sage flow data, and other relevant metrics [4]. Rate of message
generation are ramped up until performance is negatively im-
pacted. The maximum throughput that can be achieved be-
comes baseline for the messaging service application.
Few characteristics of test environment can be modified using
the benchmark and note all the changes to analyses the results.
For example, note the impact on performance after increasing
the number of connections or the size of messages five-fold or
ten-fold, changing the broker configuration, change connec-
tion properties, thread pool properties, JVM memory limits,
limit behaviors, built-in versus plugged-in persistence.
Benchmarks should be run in a controlled test environment
for some time until message service gets stabilized (Perfor-
mance is negatively impacted at startup by the Just-In-Time
compilation that turns Java code into machine code).
It is important to establish baseline usage patterns once a mes-
saging application is deployed and to establish base-line usage
pattern message server need to be monitored over an extend-
ed period. Build the average and peak values looking at pro-
duction data such as number of connections, number of mes-
sages stored in the broker, message flows into and out of a
broker, numbers of active consumers.
Baseline metrics should be checked against design expecta-

tions like checking that connections are not left open or con-
sumed messages are not being left unacknowledged. These
coding errors consume message server resources and could
significantly affect performance. Baseline usage pattern helps
in tuning the MQ system for the optimal performance.

2.3 Factors That Impact Performance of MQ Systems:

Message latency and message throughput, two of the main
performance indicators, generally depend on the time it takes
a typical message to complete various steps in the message
delivery process [5]. These steps are shown below for the case
of a persistent, reliably delivered message. The steps are de-
scribed as given below.

1. The message is delivered from generation point to

message server
2. The message server reads in the message delivered by

Generator.
3. The message is placed in persistent storage.
4. The message server confirms receipt of the message.
5. The message server determines the routing for the

message
6. The message server writes out the message
7. The message is delivered from message server to con-

suming client
8. The consuming client acknowledges receipt of the

message.
9. The message server processes client acknowledge-

ment.
10. The message server confirms that client acknowl-

edgement has been processed.

All these steps are sequential and each of them could be po-
tential bottleneck in the delivery of messages from generating
clients to consuming clients [2,6]. These steps depend upon
physical properties of the messaging system such as network
bandwidth, computer processing speeds, message server ar-
chitecture.
The following subsections discuss the impact of both applica-
tion design factors and messaging system factors on perfor-
mance. While application design and messaging system fac-
tors closely interact in the delivery of messages therefore each
category is considered separately.

2.4 Application Design Factors that Impact
Performance:

Application design decisions can have a significant effect on
overall messaging performance. The most important factors
affecting performance are those that impact the reliability of
message delivery and these are the following factors:

1. Delivery Mode (Persistent/Non-persistent Messages)
2. Use of Transactions
3. Acknowledgement Mode
4. Durable vs. Non-Durable Subscriptions
5. Use of Selectors (Message Filtering)
6. Message Size

IJSER

http://www.ijser.org/
https://docs.oracle.com/cd/E19909-01/817-3727/tuning.html#wp26295
https://docs.oracle.com/cd/E19909-01/817-3727/tuning.html#wp47865
https://docs.oracle.com/cd/E19909-01/817-3727/tuning.html#wp35779
https://docs.oracle.com/cd/E19909-01/817-3727/tuning.html#wp26340
https://docs.oracle.com/cd/E19909-01/817-3727/tuning.html#wp26383
https://docs.oracle.com/cd/E19909-01/817-3727/tuning.html#wp26402

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1854
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

7. Message Body Type

There is always trade-off between performance and reliability
and factors that increase reliability tend to decrease perfor-
mance. The following table shows how the various application
design factors generally affect messaging performance. The
table shows two scenarios—a high reliability, low perfor-
mance scenario and a high performance, low reliability scenar-
io—and the choice of application design factors that character-
izes each. Between these extremes, there are many choices and
trade-offs that affect both reliability and performance.

2.5 Delivery Mode (Persistent/Non-persistent
Messages)

Persistent messages guarantee message delivery in case of
message server failure. The broker stores the message in a per-
sistent store until all intended consumers acknowledge they
have consumed the message. Broker processing of persistent
messages is slower than for non-persistent messages for the
following reasons [7]:

1. A broker must reliably store a persistent message so

that it will not be lost should the broker fail.
2. The broker must confirm receipt of each persistent

message it receives. Delivery to the broker is guaran-
teed once the method producing the message returns
without an exception.

3. Depending on the client acknowledgment mode, the
broker might need to confirm a consuming client’s
acknowledgement of a persistent message.

2.6 Use of Transactions:
A transaction is a guarantee that all messages produced in a
transacted session and all messages consumed in a transacted
session will be either processed or not processed (rolled back)
as a unit [8]. A message produced or acknowledged in a trans-
acted session is slower than in a non-transacted session for the
following reasons:

Acknowledgement Mode:
There is mechanism for ensuring the reliability of JMS mes-
sage delivery is for a client to acknowledge consumption of
messages delivered to it by the MQ message server. If a ses-
sion is closed without the client acknowledging the message
or if the MQ message server fails before the acknowledgment
is processed, the broker redelivers that message, setting a
JMSRedelivered flag and client can choose one of three
acknowledgement modes [2,9].

1. AUTO_ACKNOWLEDGE. The system automatically

acknowledges a message once the consumer has pro-
cessed it. This mode guarantees at most one redeliv-
ered message after a provider failure.

2. CLIENT_ACKNOWLEDGE. The application controls
the point at which messages are acknowledged. All
messages processed in that session since the previous

acknowledgement are acknowledged. If the message
server fails while processing a set of acknowledg-
ments, one or more messages in that group might be
redelivered.

3. DUPS_OK_ACKNOWLEDGE. This mode instructs
the system to acknowledge messages in a lazy man-
ner. Multiple messages can be redelivered after a pro-
vider failure.

2.7 Durable vs. Non-Durable Subscriptions:
Subscribers to a topic destination fall into two categories, those
with durable and non-durable subscriptions and Durable sub-
scriptions provide increased reliability at the cost of slower
throughput for the following reasons:

• The MQ message server must persistently store the
list of messages assigned to each durable subscription
so that should a message server fail, the list is availa-
ble after recovery.

• Persistent messages for durable subscriptions are
stored persistently, so that should a message server
fail, the messages can still be delivered after recovery,
when the corresponding consumer becomes active
[10]. By contrast, persistent messages for non-durable
subscriptions are not stored persistently (should a
message server fail, the corresponding consumer con-
nection is lost, and the message would never be de-
livered).

Use of Selectors
Specific consumers are selected to target set of messages for
the optimal performance. Group of messages are targeted to
unique destination or choosing single destination. Selectors
are having the unique string of character that matches to the
string configured in the consumer e.g. (selector
NumberOfOrders > 1 delivers only messages with a
NumberOfOrders property value of 2 or more) [2,11]. Regis-
tering consumers with selectors lowers performance (as com-
pared to using multiple destinations) because additional pro-
cessing is required to handle each message.

Message Size
Message size affects performance of MQ channel accordance
with the amount of data being parsed from generating client
to broker and from broker to consuming client. However, by
batching smaller messages into a single message, the routing
and processing of individual messages can be minimized,
providing an overall performance gain [2].

Hardware
CPU processing speed and available memory are primary de-
terminants of message service performance. Software short-
coming can be limited by increasing hardware resources how-
ever, it is generally expensive to overcome bottlenecks by up-
grading the hardware [2].

Java Virtual Machine (JVM)
The MQ message server is a Java process that runs on the host

IJSER

http://www.ijser.org/
https://docs.oracle.com/cd/E19909-01/817-3727/tuning.html#wp26423

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1855
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

JVM thus JVM processing is an important determinant of how
fast and efficiently a message server can route and deliver
messages [2].

Connections
The number and speed of connections between client and bro-
ker can affect the number of messages that a message server
can handle as well as the speed of message delivery.

Message Server Connection Limits

All access to the message server is by way of connections and
any limit on the number of concurrent connections can affect
the number of generating or consuming clients that can con-
currently use the message server. The number of connections
to a message server is generally limited by the number of
threads available. MQ uses a thread pool manager which can
be configured to support either dedicated or shared thread
model [7]. The dedicated thread model is fast because each
connection has dedicated threads, however the number of
threads limits the number of connections available (one input
thread and one output thread for each connection). The shared
thread model places no limit on the number of connections,
however there is significant overhead [2,8].

3 PERFORMANCE ENHANCEMENT OF MQ SYSTEMS:

There is no universal rule to optimize the application which will be
applicable on every system. Experiment-based performance
optimizing approaches is the solution where series of load test to be
executed with the different configuration set up and evaluate the
result to arrive on the optimal performance of the systems. The best
strategy for the optimization is to tweak one configuration at a time
(e.g. Number of connection in our case) keeping all other setting
constant to observe the measurable improvement or degradation of
performance. In this case study, JMS application (WebSphere MQ
V5.0) over WebSphere Application Server V6.0 was used and
hereafter JMS application (WebSphere MQ V5.0) will be referred as
MQ system.
Number of load tests were executed to benchmark the performance
of the MQ systems with the mutually
exclusive configuration. There is always been trade-off between the
performance and resources utilization (CPU, Memory and Disk) of
the system therefore approach is to increase the throughput of the
system until resource utilization of the systems are under limit [9].
In this case study, MQ systems was having the dedicated thread
pool modal therefore maximum number of connections is always
maintained half of the maximum number of threads in the thread
pool. Optimal results (in terms of message throughput, Response time
and Pass/fail count) were produced at 90 concurrent clients
threads for the JMS application (WebSphere MQ V5.0) over
WebSphere Application Server V6.0.
load test with one-hour steady state were executed with the five
message sizes (50 KB, 100 KB,250 KB, 500 KB, 1MB and 2 MB).
Transaction per hour of the messages request were achieved as per
requirement of the application with the initial configuration of 30
connections. Messaging application had processed all the message

with in the SLA of response time however test was to identify the
best result with the tuned parameters without severely impacting
the resource utilization.

There was huge increment of 42.05% in the message servicing
throughput when number of connection has increased from 30
to 60. It had incremented to 12.46% and 7.86% when the con-
nection has increased to 75 and 90 respectively. Resource utili-
zation were also monitored for the test period as shown in the
graph. Average CPU utilizations of MQ system were 80% and
88% when the number of connection was 75 and 90 respective-
ly. There was no breakdown of the system and throughput of
messaging service when the connections were increased at 90
connections, but CPU utilization was maxed to 88% therefore
we have considered the safe and best throughput of MQ sys-
tems when the number of connection was 75 since CPU utili-
zation (88%) on MQ system is breaching the SLA for an appli-
cation.
Now this configuration (number of connection: 75) became
baseline for the further tuning of the application and same
strategy implemented to get another optimal result with the
next set of tuning which will be new baseline for the next set
of tuning. This tuning cycle goes on until application achieves
the desired results.
04 load tests were conducted with the varying number of con-
nections, thread pool connections and mixed sizes of the mes-
sage body (which was same across all the tests).

3.1 EXPERIMENT 01 (LOAD TEST 01):

6 Message body sizes (50, 100, 250, 500, 1000 and 2000 KB)
were used in combinations with 30 number of connections and
60 number of thread pool size. Response time were under tar-
get and there were no failures observed during the test. Num-
ber of processed message is given below in summarized sheet
for all the load tests.

Mes-
sage
Size
(KB)

Number
of Con-
nections
=30

Number
of Con-
nections=
60

Number of
Connec-
tions=75

Number
of Con-
nections
=90

Pro-
cessed
Messag-
es/hour

Processed
Messages/
Hour

Processed Mes-
sages/ Hour

Pro-
cessed
Messag-
es /Hour

50 7000 9000 9613 10145

100 5500 6900 7243 7800

250 3200 5120 6213 6700

500 1700 3111 3980 4312

1000 900 1567 1980 2312

2000 600 1145 1165 1245

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1856
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

3.2 EXPERIMENT 02 (LOAD TEST 02):
6 Message sizes (50, 100, 250, 500, 1000 and 2000 KB) were used
with 60 number of connections and 120 number of thread pool size.
Response time were under target and there were no failures
observed during the test.

3.3 EXPERIMENT 03 (LOAD TEST 03):
6 Message sizes (50,100,250,500,1000 and 2000 KB) were used with
75 number of connections and 150 number of thread pool size.
Response time were under target and there were no failures
observed during the test.

3.4 EXPERIMENT 04 (LOAD TEST 04):

 6 Message sizes (50,100,250,500,1000 and 2000 KB) were used
with 90 number of connections and 180 maximum number of
thread pool size. Response time were under target and no
failures were observed during the test. Maximum message
throughput was achieved with the settings with the given
settings.

4.0 RESOURCE UTILIZATION:

Resource utilization of the system had increased with eve-
ry increment in the number of connections. CPU utiliza-
tion has reached to 88% when number of connections in-
cremented to the 90 which was SLA breach for the appli-
cation therefore we have considered the number of con-
nection (75) appropriate for the system. Other perfor-
mance metrics (Memory and Disk) were not concern even
at 90 as shown in the below graph.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1857
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Number of
Connection

CPU
Utilization

Memory
Utilization

30 57% 49.00%
60 71% 55.00%
75 80% 58.00%
90 88% 63.00%

4.1 MEMORY UTILISATION:

Number of Con-
nection

CPU Utili-
zation

Memory Utili-
zation

30 57% 49.00%
60 71% 55.00%
75 80% 58.00%
90 88% 63.00%

4.2 CPU UTILISATION:

5.0 CONCLUSION:
Message queues are the way to connect different systems of the
applications. It is robust way of sending messages back and forth.
MQ systems are immune to failures and provides the guaranteed
reliability, error reporting and security.MQ systems are compara-
tively slow to its peer technology. It is always recommended to
optimize the MQ systems to enhance the end user experience and
saving the huge resources of the company. Various components of
the MQ system and their role in the performance of the application
was explained above and detailed approach was outlined to tune
the application. Paper has described the tuning steps which
recommends of doing one configuration update at a time.
Tuning effort has increased the system throughput to 72% (by
changing the Connection and Thread pool setting) However
resource Utilization of the system were also increased while

changing the configurations. Resource Utilization should be
carefully monitored to decide the tradeoff. It is suggested to execute
the load tests until it crosses the SLA (Response Time, Pass/Fail
Count or Resources Utilization of the systems) of the application.
Later decide the best configuration settings among tested settings.
Best results were achieved with the following configurations
(Connection 75 and Thread Pool Size 150) after establishing the
tradeoff.

REFERENCE:

1. Brian S Paskin et al, Performance Monitoring and Best
Practices for WebSphere on z/OS.

2. https://docs.oracle.com/cd/E19909-01/817-
3727/tuning.html

3. https://www-
01.ibm.com/software/integration/wmq/wmq-
library/

4. http://webcache.googleusercontent.com/search?q=c
ache:vQfE1yjZoSwJ:www.theedison.com/pdf/Ediso
n_IBM_WebSphere_MQ_vs_ActiveMQ_White_Paper

5. https://labs.mwrinfosecurity.com/assets/141/origin
al/mwri_websphere-mq-security-white-paper-
part1_2008-05-06.pdf

6. https://labs.mwrinfosecurity.com/assets/BlogFiles/
mwri-ibm-mq-security-presentation-defcon15-2007-
08-03.pdf

7. https://www.ibm.com/support/knowledgecenter/e
n/SSFKSJ_9.0.0/com.ibm.mq.pro.doc/q002620_.htm

8. Ebay (June 21, 2013). Ebay. http://ebay.com/.
9. Ebay Tech Blog (June 21, 2013). Cloud Bursting for

Fun and Profit.
http://ebaytechblog.com/2011/03/28/cloud-
bursting-for-fun-and-profit/.

10. https://webspherecompetition.wordpress.com/2014
/04/02/websphere-mq-7-5-and-apache-activemq-5-9-
performance-comparison-results-part-3/

11. https://docs.oracle.com/cd/E14004_01/books/Perfo
rmTun/PerformTunEAI4.html

IJSER

http://www.ijser.org/
http://webcache.googleusercontent.com/search?q=cache:vQfE1yjZoSwJ:www.theedison.com/pdf/Edison_IBM_WebSphere_MQ_vs_ActiveMQ_White_Paper
http://webcache.googleusercontent.com/search?q=cache:vQfE1yjZoSwJ:www.theedison.com/pdf/Edison_IBM_WebSphere_MQ_vs_ActiveMQ_White_Paper
http://webcache.googleusercontent.com/search?q=cache:vQfE1yjZoSwJ:www.theedison.com/pdf/Edison_IBM_WebSphere_MQ_vs_ActiveMQ_White_Paper
https://labs.mwrinfosecurity.com/assets/141/original/mwri_websphere-mq-security-white-paper-part1_2008-05-06.pdf
https://labs.mwrinfosecurity.com/assets/141/original/mwri_websphere-mq-security-white-paper-part1_2008-05-06.pdf
https://labs.mwrinfosecurity.com/assets/141/original/mwri_websphere-mq-security-white-paper-part1_2008-05-06.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-ibm-mq-security-presentation-defcon15-2007-08-03.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-ibm-mq-security-presentation-defcon15-2007-08-03.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-ibm-mq-security-presentation-defcon15-2007-08-03.pdf
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.0.0/com.ibm.mq.pro.doc/q002620_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.0.0/com.ibm.mq.pro.doc/q002620_.htm
http://ebay.com/
http://ebaytechblog.com/2011/03/28/cloud-bursting-for-fun-and-profit/
http://ebaytechblog.com/2011/03/28/cloud-bursting-for-fun-and-profit/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1858
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/

	1 Introduction
	2 The Performance Tuning Process:
	2.1 Aspects of Performance Engineering
	2.2 Benchmarking and Baselining Usage Patterns:
	2.3 Factors That Impact Performance of MQ Systems:
	2.4 Application Design Factors that Impact Performance:
	2.5 Delivery Mode (Persistent/Non-persistent Messages)
	2.6 Use of Transactions:
	Acknowledgement Mode:
	2.7 Durable vs. Non-Durable Subscriptions:
	Use of Selectors
	Message Size
	Hardware
	Java Virtual Machine (JVM)

	3 Performance Enhancement of MQ Systems:
	3.1 Experiment 01 (Load Test 01):
	3.2 Experiment 02 (Load Test 02):
	3.3 Experiment 03 (Load Test 03):
	3.4 Experiment 04 (Load Test 04):
	6 Message sizes (50,100,250,500,1000 and 2000 KB) were used with 90 number of connections and 180 maximum number of thread pool size. Response time were under target and no failures were observed during the test. Maximum message throughput was achiev...
	4.2 CPU Utilisation:
	5.0 Conclusion:
	Reference:

